
ar
X

iv
:2

40
4.

06
28

0v
1

 [
cs

.L
G

]
 9

 A
pr

 2
02

4
Published as a conference paper at ICLR 2024

ALGORITHMS FOR CACHING AND MTS
WITH REDUCED NUMBER OF PREDICTIONS

Karim Abdel Sadek
University of Amsterdam∗

karim.abdel.sadek@student.uva.nl

Marek Eliáš
Department of Computing Sciences
Bocconi University
marek.elias@unibocconi.it

ABSTRACT

ML-augmented algorithms utilize predictions to achieve performance beyond
their worst-case bounds. Producing these predictions might be a costly operation
– this motivated Im et al. (2022) to introduce the study of algorithms which use
predictions parsimoniously. We design parsimonious algorithms for caching and
MTS with action predictions, proposed by Antoniadis et al. (2023), focusing on
the parameters of consistency (performance with perfect predictions) and smooth-
ness (dependence of their performance on the prediction error). Our algorithm for
caching is 1-consistent, robust, and its smoothness deteriorates with the decreas-
ing number of available predictions. We propose an algorithm for general MTS
whose consistency and smoothness both scale linearly with the decreasing num-
ber of predictions. Without the restriction on the number of available predictions,
both algorithms match the earlier guarantees achieved by Antoniadis et al. (2023).

1 INTRODUCTION

Caching, introduced by Sleator and Tarjan (1985), is a fundamental problem in online computation
important both in theory and practice. Here, we have a fast memory (cache) which can contain up
to k different pages and we receive a sequence of requests to pages in an online manner. Whenever
a page is requested, it needs to be loaded in the cache. Therefore, if the requested page is already in
the cache, it can be accessed at no cost. Otherwise, we suffer a page fault: we have to evict one page
from the cache and load the requested page in its place. The page to evict is to be chosen without
knowledge of the future requests and our target is to minimize the total number of page faults.

Caching is a special case of Metrical Task Systems introduced by Borodin et al. (1992) as a general-
ization of many fundamental online problems. In the beginning, we are given a metric space M of
states which can be interpreted as actions or configurations of some system. We start at a predefined
state x0 ∈ M . At time steps t = 1, 2, . . . , we receive a cost function ℓt : M → R

+ ∪ {0,+∞} and
we need to make a decision: either to stay at xt−1 and pay a cost ℓt(xt−1), or to move to another,
possibly cheaper state xt and pay ℓt(xt) + d(xt−1, xt), where the distance d(xt−1, xt) represents
the transition cost between states xt−1 and xt.

The online nature of both caching and MTS forces an algorithm to make decisions without knowl-
edge of the future which leads to very suboptimal results in the worst case (Borodin et al., 1992;
Sleator and Tarjan, 1985). A recently emerging field of learning-augmented algorithms, introduced
in seminal papers by Kraska et al. (2018) and Lykouris and Vassilvitskii (2021), investigates ap-
proaches to improve the performance of algorithms using predictions, possibly generated by some
ML model. In general, no guarantee on the accuracy of these predictions is assumed. Therefore,
the performance of learning-augmented algorithms is usually evaluated using the following three
parameters:

Consistency. Performance with perfect predictions, preferably close to optimum.

Robustness. Performance with very bad predictions, preferably no worse than what is achievable by
known algorithms which do not utilize predictions.

∗The presentation of this paper was financially supported by the Amsterdam ELLIS Unit and Qualcomm.
Work completed while Abdel Sadek was in his final year of BSc at Bocconi University

1

http://arxiv.org/abs/2404.06280v1

Published as a conference paper at ICLR 2024

Smoothness. Algorithm’s performance should deteriorate smoothly with increasing prediction error
between the consistency and robustness bound.

These three parameters express a desire to design algorithms that work very well when receiving
reasonably accurate predictions most of the time and, in the rest of the cases, still satisfy state-of-
the-art worst-case guarantees. See the survey by Mitzenmacher and Vassilvitskii (2020) for more
information.

Producing predictions is often a computationally intensive task, therefore it is interesting to under-
stand the interplay between the number of available predictions and the achievable performance. In
their inspiring work, Im et al. (2022) initiated the study of learning-augmented algorithms which use
the predictions parsimoniously. In their work, they study caching with next-arrival-time predictions
introduced by Lykouris and Vassilvitskii (2021). Their algorithm uses O(b logb+1 k)OPT predic-
tions, where OPT is the number of page faults incurred by the offline optimal solution and b ∈ N

is a parameter. It achieves smoothness linear in the prediction error. It satisfies tight consistency
bounds: with perfect predictions, it incurs at most O(logb+1 k)OPT page faults and no algorithm
can do better. In other words, it achieves a constant competitive ratio with unrestricted access to pre-
dictions (b = k) and, with b a small constant, its competitive ratio deteriorates to O(log k) which is
comparable to the best competitive ratio achievable without predictions. One of their open questions
is whether a similar result could be proved for MTS.

In this paper, we study parsimonious algorithms for MTS working with action predictions which
were introduced by Antoniadis et al. (2023). Here, each prediction describes the state of an optimal
algorithm at the given time step and its error is defined as the distance from the actual state of the
optimal algorithm. The total prediction error is the sum of errors of the individual predictions. In
the case of caching, action predictions have a very concise representation, see Section 2.1. Unlike
next-arrival-time predictions, action predictions can be used for any MTS. Using the method of
Blum and Burch (2000), it is easy to achieve near-optimal robustness for any MTS losing only a
factor (1 + ǫ) in consistency and smoothness. Therefore, we study how the reduced number of pre-
dictions affects the consistency and smoothness parameters. We consider the following two regimes.

Bounded number of predictions: The algorithm can request a prediction whenever it prefers as far as
the total number of requested predictions is bounded by bOPT, where b is a parameter. This regime
is similar to Im et al. (2022).

Well-separated queries to the predictor: The queries to the predictor need to be separated by at least
a time steps, for some parameter a. This captures the situation when producing each prediction
takes more than one time step.

1.1 OUR RESULTS

We evaluate the algorithm’s performance using competitive ratio which is, roughly speaking, the
worst-case ratio between the cost incurred by the algorithm and the cost of the offline optimum, see
Section 2 for a formal definition. We say that an algorithm achieves consistency α and robustness β
if its competitive ratio is at most α when provided with perfect predictions and at most β with arbi-
trarily bad predictions. For a given function g, we call an algorithm g(η)-smooth if its competitive
ratio is at most g(η) whenever provided with predictions with the total error at most η.

Our first contribution is an algorithm for caching which receives action predictions describing the
states of the optimal offline algorithm Belady proposed by Belady (1966). High quality such pre-
dictor based on imitation learning was already designed by Liu et al. (2020). Its empirical evalua-
tion within existing algorithms designed for action predictions was performed by Chledowski et al.
(2021).

Theorem 1.1. Let f be an increasing convex function such that f(0) = 0 and f(i) ≤ 2i−1 for each
i ≥ 0. There is an algorithm for caching requiring O(f(log k))OPT predictions which achieves
consistency 1, robustness O(log k), and smoothness O(f−1(η/OPT)), where η denotes the total
prediction error with respect to Belady and OPT is the number of page faults of Belady.

In fact, the number of required predictions is slightly smaller than what is stated in the theorem. Ta-
ble 1 shows numbers of predictions and achieved smoothness for some natural choices of f . Already
with O(

√
k)OPT predictions, our bounds are comparable to Antoniadis et al. (2023) whose algo-

2

Published as a conference paper at ICLR 2024

Table 1: Smoothness vs. number of predictions.

f(i) # of predictions smoothness

2i − 1 O(
√
k)OPT O(1 + log(η

OPT + 1))

i2 O(log2 k)OPT O(
√

2 η
OPT)

i O(log k)OPT O(η
OPT)

0 2OPT O(kη
OPT)

rithm asks for a prediction in every step, its consistency is constant and its smoothness is logarithmic
in η. The algorithm also works with f(i) = 0. In that case, it asks for at most 2OPT predictions
and still remains 1-consistent. However, its smoothness is not very good. We use sliding marking
phases and a careful distribution of queries of the predictor over the time horizon. This allows us
to avoid dealing with so called "ancient" pages considered by Rohatgi (2020) and Antoniadis et al.
(2023), resulting in an algorithm with better consistency and a simpler analysis.

We discuss tightness of our bounds in Section 7. We show that with, for example, only 0.5OPT
available predictions, no algorithm can be better than O(log k)-competitive – a guarantee compa-
rable to the best classical online algorithms without predictions. We also show that the number of
predictions used by our algorithm is close to optimal.

Theorem 1.2. Let f be an increasing function. Any f(η)-smooth algorithm for caching with action
predictions, i.e., an algorithm whose competitive ratio with predictions of error η is f−1(η) for any
η > 0, has to use at least f(ln k)OPT predictions.

For general MTS, we cannot bound the number of used predictions as a function of OPT. The
reason is that any instance of MTS can be scaled to make OPT arbitrarily small, allowing us to use
only very few predictions. We propose an algorithm which queries the predictor once in every a
time steps, making at most T/a queries in total, where T denotes the length of the input sequence.

Theorem 1.3. There is a deterministic algorithm for any MTS which receives a prediction only once
per each a time steps and its cost is at most O(a) · (OFF+2η), where OFF denotes the cost of an
arbitrary offline algorithm and η the error of predictions with respect to this algorithm.

This is a more general statement than Theorem 1.1 which requires OFF to be Belady. Consider-
ing any offline optimal algorithm OFF, Theorem 1.3 implies a smoothness O(a) · (1 + 2η/OPT)
and consistency O(a). Our algorithm is based on work functions. For a = 1, its smoothness
is 1 + 2η/OFF, see Section 4, which improves upon the smoothness bound of 1 + 4η/OFF by
Antoniadis et al. (2023). It is not robust on its own. However, it can be combined with any on-
line algorithm for the given MTS using the result of Blum and Burch (2000) achieving robustness
comparable to that algorithm and losing only a factor of (1 + ǫ) in smoothness and consistency.

No algorithm receiving a prediction only once in a time steps can be o(a)-consistent. This follows
from the work of Emek et al. (2009) on advice complexity, see Section 7 for more details. The
same can be shown for smoothness by modifying the lower bound construction of Antoniadis et al.
(2023).

Theorem 1.4. There is no o(aη/OPT)-smooth algorithm for MTS with action predictions which
receives predictions only once in a time steps.

We can modify our algorithm for caching to ensure that the moments when the predictions are
queried are separated by at least a time steps, not losing too much of its performance.

Theorem 1.5. There is an algorithm for caching which receives prediction at most once in a ≤ k
time steps and using at most O(f(log k))OPT predictions in total which is O(1)-consistent,
O(log k)-robust and O(f−1(aη/OPT))-smooth.

In Section 5, we provide empirical results suggesting that our algorithm’s performance can be com-
parable to the performance of algorithms imposing no limitations on their use of predictions. Our
algorithm may therefore be useful especially with heavy-weight predictors like (Liu et al., 2020).

3

Published as a conference paper at ICLR 2024

1.2 RELATED WORK

The most related work is by Im et al. (2022), who studied caching with next arrival time predictions.
A smaller number of predictions affects the consistency of their algorithm: with b(log k/ log b)OPT
predictions, they achieve consistencyO(log k/ log b) and they show that this is tight. They also show
that their algorithm achieves linear smoothness. In contrast, our algorithm is 1-consistent when re-
ceiving at least OPT predictions. This demonstrates that action predictions, although not contain-
ing more bits, seem to contain useful information about the input instance in a more condensed
form. See (Antoniadis et al., 2023) for comparison and connections between these prediction setups.
Drygala et al. (2023) study ski rental and bahncard problems with predictions of a fixed cost.

There are several other papers on caching with predictions, including (Lykouris and Vassilvitskii,
2021; Rohatgi, 2020; Wei, 2020; Emek et al., 2009; Antoniadis et al., 2023; 2022) which design
algorithms asking for a prediction at each time step. Consistency parameters achieved by these
algorithms are constants greater than 1. Note that those using black-box methods to achieve ro-
bustness are (1 + ǫ)-consistent (e.g. (Wei, 2020)). We can explicitly compare our smoothness
bounds to Antoniadis et al. (2023) who use the same kind of predictions: their smoothness is
O(1 + log(η

OPT + 1)) with unlimited use of predictions while our algorithm achieves the same
smoothness bound with O(

√
k)OPT predictions. We compare the smoothness of the other algo-

rithms experimentally in Section 5. Antoniadis et al. (2022) study a prediction setup where each pre-
diction is only a single bit, however their algorithms need to receive it in every time step. Gupta et al.
(2022) study several problems including caching in a setting where each prediction is correct with a
constant probability.

Antoniadis et al. (2023) proposed a 1-consistent and (1+4η/OPT)-smooth algorithm for MTS with
action predictions which can be robustified by loosing factor (1 + ǫ) in consistency and smoothness.
Getting smoothness bounds sublinear in η/OPT for specific MTS problems other than caching
remains a challenging open problem even with unlimited number of predictions and this holds even
for weighted caching. Specific results on weighted caching are by Jiang et al. (2022) who studied it
in a setup requiring very verbose predictions and by Bansal et al. (2022) whose bounds depend on
the number of weight classes. There is also a consistency/robustness trade-off by Lindermayr et al.
(2022) for k-server.

Since the seminal papers by Kraska et al. (2018) and Lykouris and Vassilvitskii (2021) which initi-
ated the study of learning-augmented algorithms, many computational problems were considered.

There are papers on ski rental (Purohit et al., 2018; Antoniadis et al., 2021), secretary and match-
ing problems (Dütting et al., 2021; Antoniadis et al., 2020), online-knapsack (Im et al., 2021;
Zeynali et al., 2021; Boyar et al., 2022), graph exploration (Eberle et al., 2022), online TSP
(Bernardini et al., 2022), energy efficient scheduling (Bamas et al., 2020), flow-time scheduling
(Azar et al., 2021; 2022), restricted assignment (Lattanzi et al., 2020), non-clairvoyant schedul-
ing Purohit et al. (2018); Lindermayr and Megow (2022), and online page migration (Indyk et al.,
2022). In offline setting, there is a work of Dinitz et al. (Dinitz et al., 2021) on matching, Chen et
al. (Chen et al., 2022) on graph algorithms, Polak and Zub (Polak and Zub, 2022) on flows, Sakaue
and Oki (Sakaue and Oki, 2022) on discrete optimization problems, and Ergun et al. (Ergun et al.,
2022) on clustering. We also refer to (Lindermayr and Megow, 2022) to an updated list of results in
the area.

There are numerous works on advice complexity of online problems, where algorithms are given
certain number of bits of information about the future which are guaranteed to be correct. This is
different from our setting, where we receive predictions of unknown quality. We refer to the survey
by Boyar et al. (2017), work of Dobrev et al. (2009) on caching, Emek et al. (2009) on MTS, and
further papers by Hromkovič et al. (2010); Böckenhauer et al. (2017).

There are already works on predictors for caching. Jain and Lin (2016) proposed a binary classifier
called Hawkey which predicts which pages will be kept in cache by Belady, providing us with
action predictions. Their result was later improved by Shi et al. (2019) who designed a model called
Glider for the same classification problem. There is a very precise model by Liu et al. (2020) whose
main output can be interpreted as an action prediction although it has a second prediction head
which produces next arrival predictions. This model is large and relatively slow and served as

4

Published as a conference paper at ICLR 2024

a motivation for this work. Chledowski et al. (2021) evaluated the performance of existing ML-
augmented algorithms with this predictor.

2 PRELIMINARIES

Consider an algorithm ALG for MTS which produces a solution x0, x1, . . . , xT for an instance I

consisting of cost functions ℓ1, . . . , ℓT . We denote cost(ALG(I)) =
∑T

t=1(ℓt(xt) + d(xt−1, xt)).
We say that ALG is r-competitive with respect to an offline algorithm OFF if there is an absolute
constant α ∈ R such that E[cost(ALG(I))] ≤ r · cost(OFF(I)) + α for any instance I . If ALG
is r-competitive with respect to an optimal offline algorithm, we say that ALG is r-competitive
and call r the competitive ratio of ALG. In the classical setting (without predictions), the best
achievable competitive ratios are Θ(log k) for caching (Fiat et al., 1991) and of order poly logn for
MTS (Bartal et al., 2006; Bubeck et al., 2019), where n is the number of points in the underlying
metric space M . We refer to (Borodin and El-Yaniv, 1998) for a textbook treatment.

2.1 ACTION PREDICTIONS FOR MTS

Antoniadis et al. (2023) proposed a prediction setup which they call action predictions, where the
predictions tell us what a good algorithm would do. More precisely, at each time t, the algorithm
receives a prediction pt of a state where some offline algorithm OFF moves to at time t. The error of
prediction pt is then ηt = d(pt, ot), where ot is the real state of OFF at time t. The total prediction
error is defined as η =

∑T
t=1 ηt.

Considering the case of caching, the state corresponds to a cache content, and the prediction error
is the number of pages present in the cache of OFF and absent from the predicted cache content. A
whole cache content may seem like a huge piece of information, but action predictions for caching
can be implemented in a very succinct way. Antoniadis et al. (2023) explain how to represent them
with only O(log k) bits per time step when they are received at each time step. Our algorithm
asks, in each query, a specific number of indices of pages which are present in its cache but absent
from the predicted cache. When we talk about a bound on the number of provided predictions,
this bound applies both to the number of such queries as well as to the total number of indices
reported by the predictor during the running time of the algorithm. There are predictors which can
generate predictions of a similar kind by Jain and Lin (2016); Shi et al. (2019); Liu et al. (2020). See
(Antoniadis et al., 2023) for a detailed treatment of this prediction setup and a comparison to other
setups for caching.

2.2 CACHING: BELADY’S ALGORITHM, MARKING, AND LAZY ALGORITHMS

The classical optimal offline algorithm for caching proposed by Belady (1966) is denoted Belady in
this paper. At each page fault, it evicts a page which is going to be requested furthest in the future.
In the case of a tie, i.e., if there are several pages in the cache which will not be requested anymore,
it chooses one of them arbitrarily. Our caching algorithm assumes that the predictor is trying to
simulate Belady. The following useful property allows us to detect errors in the predictions quickly.
It was recently used by ?.
Observation 2.1. Consider request sequence r1, . . . , rT . For any t ≤ T , the cost incurred by
Belady for r1, . . . , rT until time t is the same as the cost of Belady with input r1, . . . , rt.

To see this, it is enough to note that the solution produced by Belady with input r1, . . . , rT agrees
until time t with the solution produced by Belady on r1, . . . , rt which breaks ties based on the
arrival times in rt+1, . . . , rT .

We use properties of marking algorithms in this work. Such algorithms split the input sequence
into phases, i.e., maximal subsequences where at most k distinct pages are requested. Usually, the
first phase starts in the beginning and the next phase follows just after the end of the previous one.
However, we will consider phases starting at arbitrary moments. Let O be the cache content of an
algorithm in the beginning of the phase. Whenever a page is requested for the first time during
the phase, we call this moment an arrival and we mark the page. At the end of the phase, the set
M of marked pages will have size k: some of them belong to O and are called old while those in
C = M \O are called clean. Exactly |C| pages from O remain unmarked until the end of the phase.

5

Published as a conference paper at ICLR 2024

Marking algorithms is a class of algorithms which never evict a marked page and all of them have
cache content M at the end of the phase. Belady is not marking and our algorithm is not marking
either, although it uses ideas from marking to achieve desired robustness and smoothness properties.
At the end of each phase, we can bound the difference between the cache content of some algorithm
and marking.

Observation 2.2. Let c be the cost incurred by some algorithm during a marking phase. Then,
c ≥ |M \ S|, where S is the cache content of the algorithm at the end of the phase and M is the set
of k pages requested during the phase.

This is because each page in p ∈ M has to be present in algorithm’s cache when requested during
the phase. If p /∈ S, then the algorithm must have evicted it during the phase incurring cost 1.

Observation 2.3. If a page p is evicted by Belady at time t, then p is not going to be requested in
the marking phase containing t anymore.

If p is evicted by Belady at time t, then the currently requested page rt and k − 1 pages from the
cache are k distinct pages that are requested before the moment when p is requested next time. The
current phase then needs to end before that moment.

We say that an algorithm is lazy if it evicts only one page at a time and only at a page fault. Belady
is lazy while our algorithm, as described, may not be. However, any algorithm can be made lazy
without increasing its cost. See (Borodin and El-Yaniv, 1998) for more information about caching.

Observation 2.4. The difference in the cache content of two lazy algorithms can increase only if
both of them have a page fault. In that case, it can increase by at most 1.

2.3 MTS AND ADVICE COMPLEXITY

Advice complexity studies the performance of algorithms depending on the number of bits of precise
information about the instance available in advance. In the case of MTS, Emek et al. (2009) study
the situation when algorithm receives 1

a logn bits of information about the state of some optimal
offline algorithm, being able to identify its true state once in a time steps. They formulate the
following proposition for OFF being an optimal algorithm, but the proof does not use its optimality
and it can be any algorithm located at qi at time ia.

Proposition 2.5 (Emek et al. (2009)). There is an algorithm which, with knowledge of state qi of
algorithm OFF at time ia for i = 1, . . . , T/a, is O(a)-competitive w.r.t. OFF.

In our context, we can say that the algorithm from the preceding proposition is O(a)-consistent if
q1, . . . , qT/a are states of an optimal solution. However, it is not smooth because it may not be
possible to relate the cost of OFF to the prediction error with respect to OPT.

3 BOUNDED NUMBER OF PREDICTIONS

In this section, we prove Theorem 1.1. We propose an algorithm called F&R which consists of two
parts: Follower and Robust. It starts with Follower which is 1-consistent, but lacks in smoothness
and robustness. At each page fault, Follower recomputesBelady for the part of the sequence seen so
far and checks whether it also has a page fault. If yes, it copies the behavior of the predictor (Line 3).
Otherwise, it must have received an incorrect prediction before. Therefore, it switches to Robust
(Line 5) which is no more 1-consistent, but achieves desired smoothness and robustness. Robust
runs for one marking phase and then returns back to Follower. At such moment, the predictor’s and
the algorithm’s cache can be very different and Follower may need to lazily synchronize with the
predictor (Line 4).

Algorithm Robust runs during a single marking phase starting at the same moment, splitting it into
windows as follows (assuming k is a power of 2): The first window W1 starts at the beginning of the
phase and lasts k/2 arrivals, i.e., it ends just before the arrival number k/2+1. Wi follows the Wi−1

and its length is half of the remaining arrivals in the phase. The last window Wlog k+1 = {k} lasts
until the end of the phase. Robust comes with an increasing convex function f such that f(0) = 0
and f(i) ≤ 2j − 1. Faster growing f does not further improve our smoothness bounds. Function
f determines that we should request f(i)− f(i − 1) predictions in window i. If the window is too

6

Published as a conference paper at ICLR 2024

Algorithm 1: Follower

1 P := initial cache content; // Prediction for time 0

2 foreach pagefault do
3 if rt /∈ P and Belady has a pagefault then query new prediction P and evict any

p ∈ C \ P ;
4 else if rt ∈ P then evict arbitrary p /∈ P ;
5 else Switch to Robust (Algorithm 2);

small, we ask for prediction at each time step. Robust starts with the cache content of a marking
algorithm whose new phase would start at the same moment (Line 1). In the case of a page fault,
it evicts an unmarked page chosen uniformly at random. At arrivals belonging to the sets S and
F , it performs synchronization with the predictor and queries the predictor’s state respectively. The
synchronization is always performed with respect to the most recent prediction P which, in the case
of lazy (or lazified) predictors, implicitly incorporates information from the previous predictions.

Algorithm 2: Robustf (one phase)

11 Load k distinct most recently requested pages;
2 S := {k − 2j + 1 | j = log k, . . . , 0};
3 Wi := [k − 2log k−i+1 + 1, k − 2log k−i] for i = 1, . . . , log k and Wlog k+1 = {k};
4 Choose F ⊆ {1, . . . , k} such that |F ∩Wi| = min{f(i)− f(i− 1), |Wi|} for each i;
5 foreach pagefault during the phase do
6 if it is arrival belonging to F then ask for new prediction P ;
7 if it is arrival belonging to S then synchronize with P ;
8 if requested page is still not in cache then evict random unmarked page;

9 Load all pages marked during the phase;
10 Switch to Follower (Algorithm 1);

Synchronization with P (Line 7) works as follows. All pages previously evicted by random evictions
return to the cache and the same number of pages not present in P is evicted. We denote Ei =
E−

i ∪ E+
i the set of pages evicted at the beginning of Wi, where pages in E−

i are requested during
Wi while those in E+

i are not. Note that algorithm’s and predictor’s cache may not become the same
after the synchronization. Since the algorithm starts with pages in M and loads only clean pages,
we have the following observation.

Observation 3.1. Let Ci, |Ci| = ci be the set of clean pages arriving before the start of Wi. Then,
Ei ⊆ M ∪Ci and |Ei| = |M ∪Ci| − k = ci.

We assume that the predictor is lazy and does not load pages that are not requested. Therefore, no
page from E+

i will be loaded during Wi by the predictor and the same holds for Robust, implying
the following.

Observation 3.2. For every i = 1, . . . , log k, we have E+
i ⊆ Ei+1 and therefore Ei \ Ei+1 ⊆ E−

i .

Synchronization with the marking cache performed by Robust is to ensure that the difference be-
tween the cache of the algorithm and Belady can be bounded by costs incurred by Belady locally
using Observation 2.2 instead of diverging over time solely due to incorrect predictions.

Implementation suggestions. Algorithms are described as to simplify the analysis. Synchroniza-
tion in Robust (line 7) should be done lazily as to make use of the most recent prediction. At arrivals
of clean pages, one may evict a page not present in predictor’s cache instead of a random unmarked
page; one can also ask for a fresh prediction (at most 2OPT additional queries). The second syn-
chronization with the marking cache in Robust (line 9) can be omitted. With f(i) = 0, one can
query the predictor only at clean arrivals, using at most 2OPT predictions in total. We recommend
a lazy implementation. Since Robust is not 1-consistent, one may also switch from Follower only
once Follower’s cost is at least a constant (e.g. 2 or 3) times higher than the cost of Belady.

7

Published as a conference paper at ICLR 2024

We denote Hi the ith phase of Robustf and H−
i a hypothetical marking phase which ends just

before Hi starts. Note that H−
i might overlap with Hi−1. But H1, H2, . . . are disjoint and we

denote Gi,i+1 the time interval between the end of Hi and the beginning of Hi+1. c(Hi) is the
number of clean pages during phase Hi. For a given time period X , we define ∆A(X), ∆B(X),
and ∆P (X) the costs incurred by F&R, Belady, and the predictor respectively during X and η(X)
the error of predictions received during X .

Here is the main lemma about the performance of Robust. Its proof is deferred to Section 3.2.

Lemma 3.3. Denote Xi = Hi−1 ∪ H−
i ∪ Hi. During the phase Hi, Robustf receives at most

f(log k) + 1 predictions and we have

E[∆A(Hi)] ≤ O(1)f−1

(

η(Hi)

∆B(Xi)

)

∆B(Xi). (1)

At the same time, we also have

E[∆A(Hi)] ≤ O(log k)∆B(Xi) and (2)

∆A(Hi) ≤ O(k) +O(k)η(Hi). (3)

3.1 ANALYSIS OF FOLLOWER

Lemma 3.4. Consider the gap Gi,i+1 between phases Hi and Hi+1 of Robustf . We have

∆A(Gi,i+1) ≤ ∆B(Gi,i+1) + ∆B(Hi).

Proof. There are ∆B(Gi,i+1) page faults served at line 3 because Belady also has those page faults.
To bound the cost incurred on line 4, we denote P,B,M the cache contents of the predictor,Belady,
and Robust respectively at the end of the phase Hi. The synchronization with P costs at most
|(P\M)∩B| if we omit costs incurred byBelady which were already accounted for above. However,
(P \M) ∩B = (B \M) ∩ P ⊆ B \M and |B \M | ≤ ∆B(Hi) by Observation 2.2.

Proof of Theorem 1.1. The cost of Follower until the start of H1 is the same as the cost of Belady.
Therefore, by lemmas 3.4 and 3.3 equation 1, the cost of F&R, in expectation, is at most

OPT +
∑

i

∆B(Hi) +
∑

i

O(1)∆B(Xi)f
−1

(

η(Hi)

∆B(Xi)

)

,

where the sums are over all phases of Robust and Xi = Hi−1 ∪ H−
i ∪ Hi. Since phases Hi are

disjoint and the same holds for H−
i , this expression is at most OPT ·O(f−1(η/OPT)) by concavity

of f−1, implying the smoothness bound for F&R.

If we use bound equation 2 instead of equation 1, we get O(log k)OPT – the robustness bound.
Since there must be at least one error during the execution of Follower to trigger each execution
of Robust, equation 3 implies that the cost of F&R is at most OPT+ηO(k). With η = 0, this
implies 1-consistency of F&R. Follower queries the predictor only at a page fault by OPT and the
prediction consists of a single page evicted by the predictor. Robust may ask for up to f(log k) + 1
predictions in each phase, each of them consisting of indices of at most c(Hi) pages from F&R
cache not present in the predictor’s cache. This gives both O(f(log k))OPT queries to the predictor
as well as O(f(log k))OPT predicted indices in total.

Note that Robustf can rarely use full O(f(log k)) predictions, because the last windows are not
long enough. More precise calculation of numbers of predictions can be found in Appendix A.

3.2 ANALYSIS OF Robustf

First, we relate the number of clean pages in a robust phase to the costs incurred by Belady.

Observation 3.5. Consider a phase H denoting C(H) the set of clean pages arriving during H . We
have

c(H) := |C(H)| ≤ ∆B(H−) + ∆B(H).

8

Published as a conference paper at ICLR 2024

Proof. There are k+ c(H) pages requested during H− ∪H . Therefore, any algorithm, and Belady
in particular, has to pay cost ∆B(H− ∪H) ≥ c(H).

Lemma 3.6. Consider phase Hi. Cost incurred by Robust for synchronization with marking in
Line 1 is at most ∆B(Hi−1 ∪H−

i).

Proof. Let M denote the k distinct most recently requested pages – these are marked pages during
H−

i . We consider two cases.

If H−
i ∩ Hi−1 = ∅, then whole H−

i was served by Follower. Each p ∈ M must have been in the
cache of both Follower and P when requested and Follower would evict it afterwards only if P did
the same. Therefore, Robust needs to load at most ∆P (H−

i) = ∆B(H−
i) pages.

If H−
i and Hi−1 overlap, let M ′ denote the set of pages marked during Hi−1. At the end of Hi−1,

Robust loads M ′ and Follower loads only pages from M until the end of H−
i . Therefore, Robust

starting Hi needs to evict only pages from M ′\M . Now, note that there are |M ′∪M | distinct pages
requested during Hi−1 ∪H−

i and therefore |M ′ \M | = |M ′ ∪M | − k ≤ ∆B(Hi−1 ∪H−
i).

We consider costs incurred by Robust during window Wi for i = 1, . . . , log k + 1. Note that
E1 = E+

1 = E−
1 = ∅, since W1 starts at the beginning of the phase and there are no clean pages

arriving strictly before W1.

Lemma 3.7. Expected cost incurred by Robustf during W1 is at most 2c2. For i = 2, . . . , log k+1,
we have

E[∆A(Wi)] ≤ |E−
i−1|+ ci − ci−1 + 2(|E−

i |+ ci+1 − ci),

denoting clog k+2 = c(H).

Proof. First, consider the costs during W1. There are c2 − c1 = c2 clean pages arriving during W1

and Robust has a page fault due to each of them, evicting a random unmarked page. In the worst
case, all these clean pages arrive at the beginning of W1. Therefore, at arrival c2 + 1, there are c2
pages evicted which were chosen among unmarked pages uniformly at random. Let Ua denote the
set of unmarked pages at arrival a. We have U1 = M (the initial cache content of Robust) and
none of those pages get marked during first c2 arrivals. During every arrival a = c2 + 1, . . . , k/2 =
S[2]− 1, a single unmarked page is marked and we have |Ua| = k − (a − c2). As in the classical
analysis of Marker (see (Borodin and El-Yaniv, 1998) and references therein), the probability of the
requested unmarked page being evicted is c2/|Ua|. We have

∆A(W1) = c2 +

S[2]−1
∑

a=c2+1

c2
|Ua|

≤ c2 +
k

2
· c2
k/2

= 2c2.

For i ≥ 2, there are ci pages evicted before the start of Wi: those in E+
i−1 were evicted due to

synchronization with the predictor and the rest were evicted in randomized evictions – those are
loaded back to the cache at the beginning of Wi, causing cost ci − |E+

i−1| = |E−
i−1| + ci − ci−1.

After this synchronization, all unmarked pages are in the cache except those belonging to Ei.

During Wi, pages from E−
i and ci+1 − ci new clean pages are requested causing page faults which

are resolved by evicting a random unmarked page from the cache. In the worst case, these page
faults all happen in the beginning of the window, leaving more time for page faults on randomly-
evicted pages. Let ā denote the first arrival after these page faults and Uā the set of unmarked pages
at that moment. At arrival ā, there are ci+1 pages missing from the cache: pages from E+

i which
are not going to be requested during Wi and |E−

i |+ ci+1 − ci = ci+1 − |E+
i | unmarked pages were

chosen uniformly at random from Uā \ Ei = Uā \ E+
i . This is because only pages which were

marked since the beginning of Wi until ā are those from E−
i and they were not present in the cache

before they got marked. We compute the expected number of page faults on the randomly evicted
pages. Since they are unmarked when evicted, such page faults can happen only on arrivals.

At arrival a, the set of unmarked pages Ua has size k− (a− ci+1). For any a ∈ Wi such that a ≥ ā,
we have Ua∩E−

i = ∅ and pages in Ua∩E+
i are evicted with probability 1. So, ci+1−|E+

i | evicted

9

Published as a conference paper at ICLR 2024

pages are picked uniformly at random from Ua\E+
i of size at least k−(a−ci+1)−|E+

i |. Therefore,
our expected cost is at most

S[i+1]−1
∑

a=ā

ci+1 − |E+
i |

k − a+ ci+1 − |E+
i | ≤

∑

a∈Wi

ci+1 − |E+
i |

k − a
≤ k

2i
· ci+1 − |E+

i |
k/2i

= ci+1 − |E+
i |

which is equal to |E−
i−1|+ ci − ci−1. Note that k − a ≥ k − S[i+ 1]− 1 = 2log k−i = k/2i.

For i = 1, . . . , log k, we define

rank(Wi) := |Ei+1 ∩Bi+1| −∆B(Wi),

where Bi denotes the cache content of Belady at the beginning of Wi. We do not define rank(Wi)
for i = 1 + log k. Later, we relate rank to the prediction error. We have the following lemma.

Lemma 3.8. During a phase H , the expected cost of Robustf is at most

3

log k+1
∑

i=1

rank(Wi−1) + 3c(H) + 6∆B(H).

Proof. First, we observe that

|E−
i | ≤ rank(Wi−1) + ∆B(Wi−1) + ∆B(Wi) (4)

holds for i = 2, . . . , log k+1. This is because |E−
i ∩Bi| ≤ |Ei ∩Bi| = rank(Wi−1)+∆B(Wi−1)

and |E−
i \ Bi| ≤ ∆B(Wi) due to pages from E−

i being requested during Wi and Belady having
to load them. Combining equation 4 with Lemma 3.7, and summing over all windows, we get the
statement of the lemma.

Now, we relate the rank of a window to the prediction error.

Lemma 3.9. Denote ηi the error of predictions arriving during Wi. We have

η(Wi) ≥ |F ∩Wi| rank(Wi).

Proof. Prediction error at time t is ηt = |Bt \ Pt|. At the end of Wi, it is at least |Ei+1 ∩ Bi+1|.
Due to laziness of the predictor, |Bt \Pt| can increase only if both predictor and Belady have a page
fault: in that case it may increase by 1, see Observation 2.4. Therefore, at any time t during Wi, we
have ηt = |Bt \ Pt| ≥ |Ei+1 ∩ Fi+1| − ∆B(Wi) = rank(Wi). Since we query the predictor at
arrivals belonging to F , the total error of received predictions is at least |F ∩Wi| rank(Wi).

We will analyze intervals of windows starting when some particular incorrect prediction was intro-
duced and ending once it was corrected. The following lemma charging the increase of rank to
the arriving clean pages and costs incurred by Belady will be used to bound the number of such
intervals.

Lemma 3.10. For i = 1, . . . , log k, we have

rank(Wi)− rank(Wi−1) ≤ ∆B(Wi−1) + ci+1 − ci,

denoting W0 an empty window before W1 with rank(W0) = 0.

Proof. It is enough to show that

|Ei+1 ∩Bi+1| ≤ |Ei ∩Bi|+∆B(Wi) + ci+1 − ci.

Since the right-hand side is always non-negative, we only need to consider the case when the left-
hand side is positive. We show how to charge pages in Ei+1 ∩Bi+1 either to pages in Ei ∩Bi or to
∆B(Wi) and ci+1 − ci.

Since |Ei| = ci ≤ ci+1 = |Ei+1|, we can construct an injective map β : Ei → Ei+1, such that
β(p) = p for each p ∈ Ei ∩ Ei+1. There are |Ei+1| − |Ei| = ci+1 − ci pages p such that β−1(p)
is not defined. We show that, for each p ∈ Ei+1 ∩ Bi+1 for which it is defined, β−1(p) is either a
page in Ei ∩Bi or a page loaded by Belady during Wi. There are two cases.

10

Published as a conference paper at ICLR 2024

• p ∈ Ei ∩ Ei+1 implying β−1(p) = p. Then either p ∈ Bi and therefore p ∈ Ei ∩ Bi, or
p ∈ Bi+1 \Bi implying that Belady has loaded p during Wi.

• p /∈ Ei ∩ Ei+1 implying q = β−1(p) ∈ Ei \ Ei+1. By Observation 3.2, q ∈ E−
i , i.e., it

must have been requested during Wi. If q ∈ Bi then, q ∈ Ei ∩ Bi. Otherwise, Belady
must have loaded q during Wi.

To sum up: β is an injective map and β−1(p) does not exist for at most ci+1 − ci pages p ∈
Ei+1 ∩ Bi+1. All other p ∈ Ei+1 ∩ Bi+1 are mapped by β−1 to a unique page either belonging to
Ei ∩Bi or loaded by Belady during Wi.

Proof of Lemma 3.3. Robustf receives a prediction only at an arrival belonging to F . Since F

contains
∑log k+1

i=1 |F ∩ Wi| ≤ ∑log k
i=1 (f(i) − f(i − 1)) + |Wlog k+1| ≤ f(log k) + 1 arrivals,

because |Wlog k+1| = 1 and f(0) = 0, there are at most f(log k) + 1 queries to the predictor.

To prove equations (1,2,3), we always start with bounds proved in lemmas 3.5, 3.8 and 3.6. In the
rest of the proof, we write H instead of Hi and X instead of Hi to simplify the notation.

To get equation equation 2, note that rank(Wi) ≤ c(H) for each window i. Therefore, by lemmas
3.5, 3.8 and 3.6, we can bound E[∆A(H)] by

∆B(X) + 3c(H) log k + 3c(H) + 6∆B(H) ≤ O(log k)∆B(X).

To get equation equation 3, note that ∆B(H) ≤ k, c(H) ≤ k, and rank(Wi) > 0 only if ηi ≥
|Ei+1 ∩Bi+1| > 1. Therefore, we get ∆A(H) ≤ O(k) + η(H)O(k).

Now we prove equation equation 1. We define Qm = {i | rank(Wi) < m and rank(Wi+1) ≥ m}
and Q =

∑k
m=1 |Qm|. We can bound Q using Lemma 3.10. We have

Q =
k

∑

m=1

|Qm| =
log k
∑

i=1

max{0, rank(Wi)− rank(Wi−1)} ≤
log k
∑

i=1

(2∆B(Wi) + ci+1 − ci), (5)

which is equal to 2∆B(H) + c(H).

We bound
∑log k

j=1 rank(Wj) as a function of Q and η(H)

log k
∑

i=1

rank(Wi) ≤ 2Q · f−1(
aη(H)

Q
). (6)

This relation is proved in Proposition 3.11 with a = 1 and, together with equation 5, gives us the
desired bound

E[∆A(H)] ≤ O(1)∆B(H)f−1(
aη(H)

Q
). (7)

Proposition 3.11.
log k
∑

i=1

rank(Wi) ≤ 2Q · f−1(
η(H)

Q
).

Proof. We rearrange the sum of ranks in the following way. We define Lm = {i | rank(Wi) ≥ m},
and ai,m, such that Lm =

⋃

i∈Qm
(i, i+ ai,m] for each m. We can write

log k
∑

i=1

rank(Wi) =
k
∑

m=1

|Lm| =
k
∑

m=1

∑

i∈Qm

ai,m. (8)

11

Published as a conference paper at ICLR 2024

On the other hand, we can write ηi ≥
∑rank(Wi)

m=1 |F ∩Wi| (Lemma 3.9) which allows us to decom-
pose the total prediction error η(H) as follows:

η(H) ≥
k

∑

m=1

∑

i∈Lm

|F ∩Wi| =
k
∑

m=1

∑

i∈Qm

ai,m
∑

j=1

|F ∩Wi+j |.

Let i∗ denote the first window such that |Wi∗ | < f(i∗) − f(i∗ − 1). If i + ai,m < i∗, then
∑ai,m

j=1 |F ∩Wi+j | = f(i + ai,m) − f(i) ≥ f(ai,m) by convexity of f . If this is not the case, we
claim that

∑ai,m

j=1 |F ∩Wi+j | ≥ f(ai,m/2). This is clearly true if i+ ⌈ai,m/2⌉ < i∗. Otherwise, we

have
∑ai,m

j=1 |F ∩Wi+j | ≥
∑ai,m

j=⌈ai,m/2⌉ |F ∩Wi+j | ≥ 2ai,m/2 because i+ ai,m ≤ k and therefore

|Wi+⌈ai,m/2⌉| ≥ 2ai,m/2. By our assumptions about f , we have f(ai,m/2) ≤ 2ai,m/2.

So, we have the following lower bound on η(H):

η(H) ≥
k
∑

m=1

∑

i∈Qm

f(ai,m/2). (9)

By convexity of f , this lower bound is smallest if all ami are the same, i.e., equal to the total rank
divided by Q =

∑

m |Qm| and then f(ai,m/2) = η(H)/Q for each i and m. Combining equation 8
and equation 9, we get

log k
∑

i=1

rank(Wi)

2
=

k
∑

m=1

∑

i∈Qm

f−1
(

f
(ai,m

2

))

≤ Q · f−1
(η(H)

Q

)

.

4 WELL-SEPARATED QUERIES TO THE PREDICTOR

4.1 MTS

We consider the setting when we are able to receive a prediction once every a time steps, for some
parameter a ∈ N. Without loss of generality, we assume that T is a multiple of a. In time steps
ia, where i = 1, . . . , T/a, we receive a prediction pi ∈ M . State pi itself might be very bad, e.g.
ℓia(pi) might be infinite. We use work functions to see whether there is a more suitable point nearby
pi.

Work functions. Consider an MTS on a metric space M with a starting state x0 ∈ M and a
sequence of cost functions ℓ1, . . . , ℓT . For each time step t = 1, . . . , T and state x ∈ M , we define
a work function as

wt(x) = min
{

d(yt, x) +

t
∑

i=1

d(yi−1, yi) + ℓi(yi)
}

,

where the minimum is taken over all y0, . . . , yt such that y0 = x0. In other words, it is the cheapest
way to serve all the cost functions up to time t and end in state x. Work function is a major tool for
design of algorithms for MTS and satisfies the following property.
Observation 4.1. For any x, y ∈ M and any time t, we have wt(x) ≤ wt(y) + d(y, x).

This holds because one way to serve the cost functions ℓ1, . . . , ℓt is to follow the best solution which
ends in state y and then move to x. If wt(pi) = wt(y) + d(y, pi), we can see that pi is not a very
good state, since the best solution ending in pi goes via y. We say that pi is supported by y.

Algorithm of Emek et al. (2009). Algorithm 3 was proposed by Emek et al. (2009) in the context
of advice complexity. It receives the state of an offline optimum algorithm every a time steps.

4.2 ALGORITHM FTSP

Given qi−1 and ℓt for t = (i − 1)a+ 1, . . . , ia, we define

wfi(x) = min

{

d(xia, x) +

iα
∑

j=(i−1)a+1

d(xj−1, xj) + ℓj(xj)

}

,

12

Published as a conference paper at ICLR 2024

Algorithm 3: One cycle of algorithm by Emek et al. (2009)

1 qi := reported state of OFF at time ia;
2 j := 0, c := 0;
3 for t = ia+ 1, . . . , (i + 1)a do
4 x′

t := argminx∈B(qi,2j){d(x, xt−1) + ℓt(x)};
5 while c+ d(x, x′

t) + ℓt(x
′
t) > 2j do

6 j := 2 ∗ j;
7 x′

t := argminx∈B(qi,2j){d(x, xt−1) + ℓt(x)};

8 xt := x′
t, c := c+ d(x, xt) + ℓt(xt);

where the minimum is taken over x(i−1)α, . . . xiα ∈ M such that x(i−1)a = qi−1. In fact, it is
the work function at the end of an MTS instance with initial state qi−1 and request sequence ℓt for
t = (i− 1)a+ 1, . . . , ia. Instead of pi, we choose point

qi = arg min
x∈M

{

wfi(x)

∣

∣

∣

∣

wfi(x) = wfi(pi)− d(x, pi)

}

,

i.e., the "cheapest" state supporting pi in wfi. After computing qi, we run one cycle of Algorithm 3.
This algorithm which we call “Follow the Scarce Predictions” (FtSP), is summarized in Algorithm 4.

Algorithm 4: FtSP

1 for i = 0, . . . , T/a do
2 receive prediction pi;
3 use pi to compute qi;
4 run one cycle of Algorithm 3 starting at qi;

Let Q denote the best (offline) algorithm which is located at qi at time step ia for each i =
1, . . . , T/a. We have

cost(Q) =

T/a
∑

i=1

wfi(qi).

We can relate the cost of Q to the prediction error using the following lemma. Together with Propo-
sition 2.5, it gives a bound

cost(ALG) ≤ O(a)(OFF+2η),

implying Theorem 1.3.

Lemma 4.2. Let OFF be an arbitrary offline algorithm and oi denote its state at time ia for i =
1, . . . , T/a. If Q was computed from predictions p1, . . . , pT/a, we have

cost(Q) ≤ OFF+2η,

where η =
∑T/a

i=1 d(pi, oi) is the prediction error with respect to OFF.

Proof. Denote Ai an algorithm which follows the steps of Q until time ia and then follows the steps
of OFF. We have

cost(Ai) ≤ cost(Ai−1) + wfi(qi)− wfi(oi) + d(qi, oi)

because both Ai and Ai−1 are at qi−1 at time (i − 1)a, and Ai−1 then travels to oi paying wfi(oi)
while Ai travels to qi at ia paying wfi(qi) and its costs after ia will be by at most d(qi, oi) larger
than the costs of Ai−1.

By Observation 4.1 and the choice of qi, we have

wfi(oi) ≥ wfi(pi)− d(oi, pi) = wfi(qi) + d(qi, pi)− d(oi, pi).

13

Published as a conference paper at ICLR 2024

Combining the two preceding inequalities, we get

cost(Ai) ≤ cost(Ai−1) + wfi(qi)− wfi(qi)

+ d(oi, pi)− d(pi, qi) + d(qi, oi)

≤ cost(Ai−1) + 2d(oi, pi),

where the last step follows from the triangle inequality.

Since OFF = A0 and Q = AT/a, we have

Q ≤ OFF+2

T/a
∑

i=1

d(oi, pi) = OFF+2η.

4.3 CACHING

Follower cannot maintain 1-consistency in this setting. For the sake of theoretical bound, we can
do the following: We serve the whole input sequence by subsequent phases of Robustf which is
O(1)-consistent with F chosen in such a way that the arrivals in F are separated by at least a. We
prove the following replacement of Proposition 3.11.

Proposition 4.3.
log k
∑

i=1

rank(Wi) ≤ 2Q · f−1

(

a η(H)

Q

)

.

Proof. We rearrange the sum of ranks in the following way. We define Lm = {i | rank(Wi) ≥ m},
Qm = {i | rank(Wi) < m and rank(Wi+1) ≥ m}, and ai,m, such that Lm =

⋃

i∈Qm
(i, i + ai,m]

for each m. We can write

log k
∑

i=1

rank(Wi) =

k
∑

m=1

|Lm| =
k
∑

m=1

∑

i∈Qm

ai,m. (10)

On the other hand, we can write ηi ≥
∑rank(Wi)

m=1 |F ∩Wi| (Lemma 3.9) which allows us to decom-
pose the total prediction error η(H) as follows:

η(H) ≥
k

∑

m=1

∑

i∈Lm

|F ∩Wi| =
k
∑

m=1

∑

i∈Qm

ai,m
∑

j=1

|F ∩Wi+j |.

Let i∗ denote the first window such that |Wi∗ |
a < f(i∗) − f(i∗ − 1). If i + ai,m < i∗, then

∑ai,m

j=1 |F ∩Wi+j | = f(i + ai,m) − f(i) ≥ f(ai,m) by convexity of f . If this is not the case, we
claim that

∑ai,m

j=1 |F ∩Wi+j | ≥ a−1f(ai,m/2).

• If i+ ⌈ai,m/2⌉ < i∗: we have

ai,m
∑

j=1

|F ∩Wi+j | ≥
⌈ai,m/2⌉
∑

j=1

|F ∩Wi+j | ≥ f(ai,m/2).

• Otherwise: we have
ai,m
∑

j=1

|F∩Wi+j | ≥
ai,m
∑

j=⌈ai,m/2⌉

|F∩Wi+j | ≥
ai,m
∑

j=⌈ai,m/2⌉

1

a
|Wi+j | ≥

1

a
2ai,m/2 ≥ a−1f(ai,m/2)

By our assumptions about f saying that f(ai,m/2) ≤ 2ai,m/2.

14

Published as a conference paper at ICLR 2024

So, we have the following lower bound on η(H):

aη(H) ≥
k
∑

m=1

∑

i∈Qm

f(ai,m/2). (11)

By convexity of f , this lower bound is smallest if all ami are the same, i.e., equal to aη(H) divided
by Q =

∑

m |Qm| and then f(ai,m/2) = aη(H)/Q for each i and m. Combining equation 10 and
equation 11, we get

log k
∑

i=1

rank(Wi)

2
=

k
∑

m=1

∑

i∈Qm

f−1
(

f
(ai,m

2

))

≤ Q · f−1
(aη(H)

Q

)

Using the proposition above in Equation equation 6 in the proof of Lemma 3.3 gives us the following
smoothness bound:

Lemma 4.4. Denote Xi = Hi−1 ∪H−
i ∪Hi. During the phase Hi, Robustf receiving at most one

prediction in a time steps incurs the cost

E[∆A(Hi)] ≤ O(1)f−1

(

aη(Hi)

∆B(Xi)

)

∆B(Xi).

Theorem 1.5 follows from summation of the bound above over all phases of Robust and concavity
of f−1, as in proof of Theorem 1.1.

5 EXPERIMENTS

We perform an empirical evaluation of our caching algorithm F&R on the same datasets and with
the same predictors as the previous works (Lykouris and Vassilvitskii, 2021; Antoniadis et al., 2023;
Im et al., 2022). We use the following datasets.

• BrightKite dataset (Cho et al., 2011) contains data from a certain social network. We create
a separate caching instance from the data of each user, interpreting check-in locations as
pages. We use it with cache size k = 10 and choose instances corresponding to the first 100
users with the longest check-in sequences requiring at least 50 page faults in the optimal
policy.

• CitiBike dataset contains data about bike trips in a bike sharing platform CitiBike. We
create a caching instance from each month in 2017, interpreting starting stations of the
trips as pages, and trimming length of each instance to 25 000. We use it with cache size
k = 100.

Some of the algorithms in our comparison use next-arrival predictions while F&R uses action pre-
dictions that can be generated from next-arrival predictions. Therefore, we use predictors which
predict the next arrival of the requested page and convert it to action predictions. This process was
used and described by Antoniadis et al. (2023) and we use their implementation of the predictors.
Our algorithm is then provided limited access to the resulting action predictions while the algorithm
of Im et al. (2022) has limited access to the original next-arrival predictions.

• Synthetic predictions: compute the exact next arrival time computed from the data and
add noise to this number. This noise comes from a log-normal distribution with the mean
parameter µ = 0 and the standard deviation parameter σ. We use σ ∈ [0, 50].

• PLECO predictor proposed by Anderson et al. (2014): This model estimates the probability
p of a page being requested in the next time step and we interpret this as a prediction that
the next arrival of this page will be in 1/p time steps. The model parameters were fitted to
BrightKite dataset and not adjusted before use on CitiBike.

• POPU – a simple predictor used by Antoniadis et al. (2023): if a page appeared in p fraction
of the previous requests, we predict its next arrival in 1/p time steps.

15

Published as a conference paper at ICLR 2024

0 10 20 30 40 50
Noise parameter σ of the synthetic predictor

1.0

1.1

1.2

1.3

C
om

pe
ti

tiv
e

ra
ti

o

LRU

Marker

FtP

AQ_b2

FtPM

T&D

F&R

Figure 1: BrightKite dataset with Synthetic predictor: competitive ratio

In our comparison, we include the following algorithms: offline algorithm Belady which
we use to compute the optimal number of page faults OPT, standard online algorithms LRU
and Marker (Fiat et al., 1991), ML-augmented algorithms using next arrival predictions L&V
(Lykouris and Vassilvitskii, 2021), LMark and LnonMark (Rohatgi, 2020), FtPM which, at each
step, evicts an unmarked page with the furthest predicted next arrival time, and algorithms for action
predictions FtP and T&D (Antoniadis et al., 2023). We use the implementation of all these algo-
rithms published by Antoniadis et al. (2023). We implement algorithm AQ (Im et al., 2022) and our
algorithm F&R.

Notes on implementation of F&R. We follow the recommendations in Section 3 except that
Follower switches to Robust whenever its cost is α = 1 times higher compared to Belady in the
same period. With higher α, the performance of F&R approaches FtP on the considered datasets.
With k = 10 (BrightKite dataset), we use F = [1, 6, 9] corresponding to f(i) = i. Note that,
with such small k, polynomial and exponential f would also give a very similar F . With k = 100
(CitiBike dataset), we use exponential f(i) = 2i+1 − 1. With a-separated queries, Follower uses
LRU heuristic when prediction is unavailable, and Robust ignores F , querying the predictor at each
page fault separated from the previous query by at least a time steps.

Results. Figures 1 and 3 contain averages of 10 independent experiments. Figure 1 shows that
the performance of F&R with high-quality predictions is superior to the previous ML-augmented
algorithms except for FtP which follows the predictions blindly and is also 1-consistent. With high
σ, the performance of T&D becomes better. This is true also for F&R with F = [1..10], suggesting
that T&D might be more efficient in using erroneous predictions. Figure 2 shows the total number
of times algorithms query the predictor over all instances. Response to such query is a single page
missing from predictor’s cache in the case of F&R and T&D and next arrival times of b pages in
the case of AQ_b. Note that FtPM is equivalent to the non-parsimonious version of AQ with b = k.
F&R makes the smallest number of queries: with perfect predictions, it makes exactly OPT queries
and this number decreases with higher σ as F&R spends more time in Robust.

Figure 3 shows that F&R performs well in regime with a-separated queries. While the performance
of FtPM with POPU predictor worsens considerably towards Marker already with a = 5, the perfor-
mance of F&R worsens only very slowly. On CitiBike dataset, it keeps its improvement over Marker
even with a = 20 (note that we use k = 100 with this dataset). Predictions produced by PLECO
seem much less precise as suggested by FtP with PLECO being worse than Marker and smaller
number of such predictions either improves (AQ, FtPM) or does not affect performance (F&R) of
considered algorithms.

16

Published as a conference paper at ICLR 2024

0 10 20 30 40 50
Noise parameter σ of the synthetic predictor

25000

30000

35000

40000

45000

N
um

be
r

of
qu

er
ie

s
to

th
e

pr
ed

ic
to

r

FtP

FtPM

AQ_b2

T&D

F&R

Figure 2: BrightKite dataset with Synthetic predictor: number of used predictors

Dataset Predictor Marker F&R_a1 F&R_a2 F&R_a3 F&R_a5 F&R_a8 F&R_a20

CitiBike POPU 1.862 1.800 1.802 1.802 1.802 1.803 1.803
CitiBike PLECO 1.862 1.878 1.878 1.878 1.879 1.879 1.879
BrightKite POPU 1.333 1.320 1.328 1.332 1.336 1.337 1.341
BrightKite PLECO 1.333 1.371 1.374 1.376 1.377 1.378 1.378

Dataset Predictor T&D FtP FtPM_a1 FtPM_a5 AQ_b8 L&V LMark LnonMark

CitiBike POPU 1.776 1.739 1.776 1.833 1.782 1.776 1.780 1.771
CitiBike PLECO 1.847 2.277 1.877 1.866 1.875 1.877 1.876 1.863
BrightKite POPU 1.276 1.707 1.262 1.306 1.263 1.262 1.264 1.266
BrightKite PLECO 1.292 2.081 1.341 1.337 1.342 1.340 1.337 1.333

Figure 3: Competitive ratios with predictors POPU and PLECO

17

Published as a conference paper at ICLR 2024

0 10 20 30 40 50
Noise parameter σ of the synthetic predictor

1.0

1.1

1.2

1.3

C
om

pe
ti

tiv
e

ra
ti

o
LRU

Marker

FtP

L&V

LnonMark

F&R

Figure 4: BrightKite dataset with Synthetic predictor: competitive ratio

0 10 20 30 40 50
Noise parameter σ of the synthetic predictor

25000

30000

35000

40000

45000

N
um

be
r

of
qu

er
ie

s
to

th
e

pr
ed

ic
to

r

FtP

L&V

LnonMark

F&R

Figure 5: BrightKite dataset with Synthetic predictor: number of used predictions

18

Published as a conference paper at ICLR 2024

0 10 20 30 40 50

Noise parameter σ of the synthetic predictor

1.00

1.05

1.10

1.15

1.20

1.25

1.30

C
om

pe
tit

iv
e

ra
tio LRU

Marker

FtP

T&D

F&R_a1

F&R_a2

F&R_a3

F&R_a5

Figure 6: BrightKite dataset with Synthetic predictor: competitive ratio

Figures 4 and 5 complements the comparison of F&R to existing ML-augmented algorithms for
paging by including those omitted in Figure 1. With smaller σ, it again demonstrates the better
consistency of F&R. With higher σ, F&R achieves performance comparable to both L&V and
LnonMark, while using a smaller number of predictions. We have decided not to include LMark
because its performance as well as number of predictions used were almost the same as of LnonMark.
Note that, in the case of both algorithms, the number of used predictions is equal to the number of
clean arrivals and therefore it does not change with the prediction error.

Figures 6 and 7 shows performance of F&R in regime with a-separated queries for different values
of a. It shows a significant loss of consistency already with a = 2 compared to a = 1. However,
with higher noise parameter σ, the difference in performance does not seem large. In this regime, the
focus is on the gap between predictor queries rather than the total number of queries: F&R queries
a predictor at each page fault separated from previous query by at least a time steps. However, we
decided to include also the plot of the total number of queries (Figure 7) because it shows that with
σ > 20, F&R with a = 1 uses a smaller number of predictions than with a = 2 and even a = 3,
while maintaining a better performance. This suggests that the freedom to choose the right moment
for a query might be more important for the performance than the total number of used predictions.

Figure 8 shows experiments with a probabilistic predictor on the BrightKite dataset. In this setting,
we consider a predictor that evicts the page requested furthest in the future with a given probability
1−p. On the other hand, it evicts a random page with probability p. The horizontal axis corresponds
to the probability p. We can observe that better consistency of our algorithm compared to T&D is
visible for p up to 0.4.

Each plot and table contains averages of 10 independent experiments. We have seen standard devia-
tions at most 0.004 in the case of figures 1, 4, 6; 0.0015 for Figure 3 on CitiBike dataset and 0.0025
on BrightKite dataset, and 300 for figures 2, 5, 7, counting numbers of used predictions.

6 CONCLUSIONS

We present algorithms for MTS and caching with action predictions working in the setting where the
number of queries or the frequency of querying the predictor are limited. We have shown that one
can achieve theoretical as well as empirical performance comparable to the setting with unlimited

19

Published as a conference paper at ICLR 2024

0 10 20 30 40 50
Noise parameter σ of the synthetic predictor

15000

20000

25000

30000

35000

40000

45000

N
um

be
r

of
qu

er
ie

s
to

th
e

pr
ed

ic
to

r

FtP

T&D

F&R_a1

F&R_a2

F&R_a3

F&R_a5

Figure 7: BrightKite dataset with Synthetic predictor: number of used predictions

0.0 0.2 0.4 0.6 0.8 1.0
Probability Error

1.0

1.1

1.2

1.3

1.4

C
om

pe
ti

tiv
e

ra
ti

o

LRU

Marker

FtP

T&D

F&R

Figure 8: BrightKite dataset with probabilistic predictor: competitive ratio

20

Published as a conference paper at ICLR 2024

access to the predictor, possibly enabling usage of precise but heavy-weight prediction models in
environments with scarce computational resources.

7 LOWER BOUNDS

7.1 CACHING

Proof of the following proposition can be found in (Borodin and El-Yaniv, 1998, Theorem 4.4).

Proposition 7.1 ((Fiat et al., 1991)). For any randomized algorithm ALG for caching there is an
input instance on universe of k+1 pages such that the expected cost of ALG is more than ln k times
the cost of the offline optimal solution.

For a given algorithm, it constructs an instance consisting of marking phases, each with a single
clean page such that the optimal algorithm pays 1 and the online algorithm pays at least ln k.

Imagine an algorithm receiving at most 0.5OPT predictions during this instance. Then, there must
be at least 0.5OPT phases during which the algorithm receives no prediction. Its cost is at least ln k
in each such phase, giving total cost 0.5OPT ln k.

Theorem 1.2 is implied by the following more general statement with c = 1 and d = 0.

Theorem 7.2. Let c ≥ 1 and d ≥ 0 be constants. Any (cf−1(η) + d)-smooth algorithm for caching
with action predictions has to use at least f(c−1 ln k − d)OPT predictions.

Proof. Consider a fixed algorithm accepting action predictions. Choose T long enough, an arbitrary
prediction for each time step t = 1, . . . , T , and give them to the algorithm at time 0. Having the
predictions already, this algorithm becomes a standard randomized algorithm which does not use any
further predictions. We use Proposition 7.1 to generate an instance such that E[ALG] ≥ OPT ln k,
where ALG denotes the cost of the algorithm with predictions generated in advance. It is clear
that these predictions, generated before the adversary has chosen the input instance, are useless, not
helping the algorithm to surpass the worst-case bounds. However, since the universe of pages has
size only k + 1, each of the predictions can differ from an optimal algorithm by at most one page.

If we want to have E[ALG]
OPT ≤ cf−1(η

OPT) + d, then we need

η

OPT
≥ f

(

E[ALG]

cOPT
− d

)

> f

(

ln k

c
− d

)

.

Since every prediction has error at most 1, we need to receive at least η ≥ f(c−1 ln k − d)OPT
predictions.

7.2 MTS

Antoniadis et al. (2023) showed the following lower bound on smoothness of algorithms for general
MTS with action predictions.

Proposition 7.3 (Antoniadis et al. (2023)). For η ≥ 0 and n ∈ N, every deterministic (or random-
ized) online algorithm for MTS on the n-point uniform metric with access to an action prediction
oracle with error at least η with respect to some optimal offline algorithm has competitive ratio
Ω
(

min
{

αn, 1 +
η

OPT

})

, where αn = Θ(n) (or αn = Θ(logn)) is the optimal competitive ratio of
deterministic (or randomized) algorithms without prediction.

We use this proposition to prove the following theorem from which Theorem 1.4 directly follows.

Theorem 7.4. For η ≥ 0 and n ∈ N, every deterministic (or randomized) online algorithm for
MTS on the n-point uniform metric with access to an action prediction oracle at most once in a
time steps with error at least η with respect to some optimal offline algorithm has competitive ratio
Ω
(

min
{

αn, 1 +
aη

OPT

})

, where αn = Θ(n) (or αn = Θ(logn)) is the optimal competitive ratio of
deterministic (or randomized) algorithms without prediction.

Proof. We extend the (n− 1)-point uniform metric from the proposition above by a single point p∞
whose cost will be +∞ at each time step, ensuring the optimal algorithm will never be located there.

21

Published as a conference paper at ICLR 2024

Consider a fixed algorithm and a predictor producing at most one prediction in a time steps with the
total prediction error η. By issuing prediction p∞ in all missing time steps, we complete predictions
for each time step with error at least η′ ≥ aη.

By proposition above, the algorithm with completed predictions has competitive ratio at least

Ω

(

min
{

αn−1, 1 +
η′

OPT

}

)

≥ Ω

(

min
{

αn, 1 +
aη

OPT

}

)

,

since αn and αn−1 differ by at most a constant factor.

8 FITF ORACLE

In this section we work with a predictor which tells us which page in our current cache will be
requested furthest in the future, we call it a FitF page. Note that this is not the same as the predictions
considered in Section 3, where we receive a page not present in Belady’s cache. Belady evicts a
FitF page from its current cache content which may be different from the FitF page from the current
cache content of our algorithm. Prediction error is the total number of times the predictor reports an
incorrect FitF page.

We split our algorithm into Follower and Robust part. The Follower (Algorithm 5), checks at each
page fault whether Belady starting at the same time with the same cache content also has a page
fault. If yes, it evicts a page reported by the predictor. Otherwise, it switches to the Robust part
(Algorithm 6).

Algorithm 5: Follower with FitF oracle

1 P := starting cache content;
2 foreach pagefault do
3 Compute Belady for the sequence from the beginning of this execution starting with P ;
4 if Belady has page fault as well then
5 p := page in the current cache chosen by the predictor;
6 evict p;
7 else
8 Run one phase of Algorithm 6 starting with the current cache content;

Lemma 8.1. Consider one execution of Algorithm 5, denoting σ the request subsequence and ϕ the
number of incorrect predictions received during this execution. Algorithm 5 pays the same cost as
Belady serving σ and starting with cache content P . There is a tie-breaking rule for Belady such
that the cache contents of both algorithms after processing σ differ in at most ϕ pages.

Proof. Whenever the algorithm has a page fault and Belady not, the execution of Algorithm 5
terminates. Therefore, both algorithms have the same cost during the execution.

Denote A and B the cache contents of our algorithm and Belady respectively. We choose the
following tie-breaking rule for Belady: whenever the algorithm evicts p ∈ A ∩B which is no more
requested in σ, Belady evicts p as well. The size of A \B increases only when the algorithm evicts
a predicted page p ∈ A ∩B and Belady evicts a different page q ∈ A ∩B. This can happen only if
the next request of p comes earlier than q by the tie-breaking rule above. Since p, q ∈ A, the oracle
made a prediction error.

Robust part (Algorithm 6) uses a parameter b which controls the number of predictions used during
its execution. It runs for a duration of a single marking phase split into log k windows, as in Section 3,
making sure that the number of predictions received in each window is at most the number of clean
pages received so far. Evictions of random unmarked pages are used at page faults with no available
prediction. At the end, it loads all marked pages. This is to ensure that the difference between the
optimal and algorithm’s cache content can be bounded by the cost of the optimal algorithm during
the phase (using Observation 2.2) instead of accumulating over repeated executions of Follower and
Robust.

22

Published as a conference paper at ICLR 2024

Algorithm 6: Robust with FitF oracle

1 P := starting cache content;
2 S := [t = k − 2j + 1 | for j = log k, . . . , 0];
3 Wi := [S[i], S[i+ 1]− 1] for i = 1, . . . , log k + 1 ; // Split the phase into

windows

4 foreach pagefault at time t during the phase do
5 ct := number of clean pages which arrived so far;
6 if number of received predictions in the phase is less than bct then
7 if number of received predictions in this window is less than ct then
8 p := page in the current cache chosen by the predictor;
9 evict p;

10 else
11 evict a random unmarked page;

12 Once phase has ended, load all marked pages to the cache and run Algorithm 5;

Lemma 8.2. Consider one execution of Algorithm 6 during which it receives ϕ incorrect predictions.
The expected cost incurred by Algorithm 6 is at most 2∆B + 3ϕ(1 + b−1 log k), where ∆B denotes
the cost incurred by Belady starting at the same time with the same cache content.

Proof. There are three kind of page faults:

1. evicted page is chosen by the predictor

2. requested page was chosen before by the predictor, evicted page was chosen at random

3. both evicted and requested pages were chosen at random

In the worst case, we can assume that once we run out of budget for predictions, all incorrectly
evicted pages are requested in page faults of type 2 and returned to the cache. Now, let g denote
the number of pages evicted due to correct predictions – they are not going to be requested in this
phase anymore (Observation 2.3). All other evicted pages are chosen uniformly at random among
unmarked pages which were not evicted due to correct predictions. So, until another batch of page
faults of type 1, we have only page faults on arrivals and the probability of a page fault on arrival a
is at most

ca − g

k − (a− ct)− g
,

where ca is the number of clean pages until arrival a and k − (a − ct) is the number of unmarked
pages, at most g of them were evicted due to correct predictions.

We count the number of page faults in window i for i = 1, . . . , log k+1. We denote mi the number
of page faults of type 1 and resulting into eviction of gi correctly predicted pages. Then, by our
assumption, we have mi − gi page faults of type 2. The expected number of page faults of type 3
depends on when do types 1 and 2 happen. In the worst case, they all happen in the beginning of Wi

as well as all arrivals of clean pages. We consider three cases.

Case A. Prediction budget was not depleted, there were only evictions of type 1.

∆A(Wi) = mi = ϕi + gi.

Case B. There were mi = ci+1 predictions during Wi and we have ϕi = ci+1 − gi. After page
faults of type 2, there are at most ci+1 − gi randomly chosen unmarked pages evicted. Therefore,

23

Published as a conference paper at ICLR 2024

the expected number of page faults of type 3 is at most
∑

a∈Wi

ci+1 − ga
k − (a− ci+1)− ga

≤
∑

a∈Wi

ci+1 − gi
k − (a− ci+1)− gi

≤
∑

a∈Wi

ci+1 − gi
k − a

≤ k

2i
· ci+1 − gi

k/2i
= ci+1 − gi.

Therefore, counting evictions of types 1, 2, and 3, we have

∆A(Wi) ≤ (ϕi + gi) + ϕi + (ci+1 − gi) ≤ gi + 3ϕi.

Case C. There were bci+1 predictions since the beginning of the phase. We have mi ≤ ci+1 and
ci+1− gi ≤ 1

b (bci+1− gi) ≤ 1
bϕ where ϕ is the total number of incorrect predictions received since

the beginning of the phase. We have

∆A(Wi) ≤ ci+1 + (ci+1 − gi) + (ci+1 − gi) ≤ gi + 3(ci+1 − gi),

which is at most gi + 3ϕ/b.

Now, the sum of costs over all the windows is at most
∑

i

gi +
∑

i

3ϕi +
∑

i

3ϕ/b+ c ≤ 2c+ 3ϕ+
3ϕ

b
log k,

where c =
∑

i ci ≤ ∆B , because we consider Belady starting with the same cache content as the
algorithm which does not contain the clean pages.

Theorem 8.3. Let b ∈ {1, . . . , log k} be a parameter. During a request sequence with optimum
cost OPT, our algorithm receives at most O(b)OPT predictions and its expected cost is always
bounded by O(log k)OPT. If only ϕ predictions are incorrect, its expected cost is at most

(

2 +
ϕ

OPT
(4 + 3b−1 log k)

)

OPT .

Moreover, if ϕ = 0, its cost is equal to OPT.

Proof. We split the time horizon into intervals corresponding to executions of Follower and Robust.
For each interval i, we denote ϕi the number of received incorrect predictions, ∆B

i the cost incurred
by Belady started with the same content as our algorithm and ∆O

i the cost incurred by the optimal
solution during interval i. We denote F the set of intervals during which Follower was executed and
R the set of intervals during which Robust was executed. We also define 0 ∈ R an empty interval
in the beginning of the request sequence with ∆O

0 = ∆B
0 = 0.

In order to prove bounds on robustness and number of used predictions, we provide relations be-
tween ∆B

i and ∆O
i independent of ϕ. For each i ∈ F , we have i−1 ∈ R. Interval i−1 is a marking

phase and Robust has all marked pages in the cache at the end (Lemma 8.2). By Observation 2.2,
the starting cache content of Follower in interval i differs from optimal cache in at most ∆O

i−1 pages.
Therefore, we have

∆B
i ≤ ∆O

i +∆O
i−1 ∀i ∈ F. (12)

For each i ∈ R, we have i− 1 ∈ F and i − 2 ∈ R. By Observation 2.4, the difference between the
cache of Follower and optimum increases during interval i− 1 by at most ∆O

i−1. Since the starting
cache of Follower in interval i− 1 differs from optimal in ∆O

i−2 pages, the starting cache of Robust
in interval i differs from optimum by at most ∆O

i−2 +∆O
i−1. Therefore, we have

∆B
i ≤ ∆O

i +∆O
i−1 +∆O

i−2 ∀i ∈ R. (13)

Using equations equation 12 and equation 13, we can bound the number of used predictions as
∑

i∈F

∆B
i +

∑

i∈R

b∆B
i ≤ 3bOPT .

24

Published as a conference paper at ICLR 2024

Since ϕ ≤ ∆B
i , for i ∈ F , and ϕi ≤ b∆B

i for i ∈ R, we have the following robustness bound:

ALG ≤
∑

i∈F

∆B
i +

∑

i∈R

(

∆B
i + ϕi(3 + 3b−1 log k)

)

≤
∑

i∈F

∆B
i +

∑

i∈R

∆B
i (1 + b)(3 + 3b−1 log k)

≤ OPT ·O(log k),

where the last inequality follows from equation 12, equation 13, and b ≤ log k.

Now, we analyze smoothness. We can bound ∆B
i − ∆O

i by the difference between optimal and
algorithm’s cache in the beginning of the interval i. This is at most ϕi−1 for each i ∈ R (Lemma 8.1)
and at most ∆O

i−1 for each i ∈ F by equation 12. Lemmas 8.1 and 8.2 imply

ALG ≤
∑

i∈F

∆B
i +

∑

i∈R

(

2∆B
i + ϕi(3 + 3b−1 log k)

)

≤
∑

i∈F

(∆O
i +∆O

i−1) +
∑

i∈R

(

∆O
i + ϕi−1 + ϕi(3 + 3b−1 log k)

)

≤ 2OPT+ϕ(4 + 3b−1 log k).

1-consistency of our algorithm can be seen from the fact that each execution of Robust is triggered
by an incorrect prediction. Therefore, with perfect predictions, only Follower is used and behaves
the same as Belady.

REFERENCES

[1] A. Anderson, R. Kumar, A. Tomkins, and S. Vassilvitskii. The dynamics of repeat con-
sumption. In Proceedings of conference World Wide Web ’14, pages 419–430, 2014. doi:
10.1145/2566486.2568018.

[2] A. Antoniadis, T. Gouleakis, P. Kleer, and P. Kolev. Secretary and online matching problems
with machine learned advice. In NeurIPS, 2020.

[3] A. Antoniadis, C. Coester, M. Eliáš, A. Polak, and B. Simon. Learning-augmented dynamic
power management with multiple states via new ski rental bounds. In NeurIPS, 2021.

[4] A. Antoniadis, J. Boyar, M. Eliáš, L. M. Favrholdt, R. Hoeksma, K. S. Larsen, A. Polak, and
B. Simon. Paging with succinct predictions, 2022.

[5] A. Antoniadis, P. J. Ganje, and G. Shahkarami. A novel prediction setup for online speed-
scaling. In SWAT, volume 227 of LIPIcs, pages 9:1–9:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[6] A. Antoniadis, C. Coester, M. Eliáš, A. Polak, and B. Simon. Online metric algorithms with
untrusted predictions. ACM Trans. Algorithms, 19(2), apr 2023. ISSN 1549-6325. doi: 10.
1145/3582689. URL https://doi.org/10.1145/3582689.

[7] Y. Azar, S. Leonardi, and N. Touitou. Flow time scheduling with uncertain process-
ing time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, page 1070–1080, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451023. URL
https://doi.org/10.1145/3406325.3451023.

[8] Y. Azar, S. Leonardi, and N. Touitou. Distortion-oblivious algorithms for minimizing flow
time. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 252–274. SIAM, 2022.
URL https://doi.org/10.1137/1.9781611977073.13.

[9] É. Bamas, A. Maggiori, L. Rohwedder, and O. Svensson. Learning augmented energy mini-
mization via speed scaling. In NeurIPS, 2020.

25

https://doi.org/10.1145/3582689
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.1137/1.9781611977073.13

Published as a conference paper at ICLR 2024

[10] N. Bansal, C. Coester, R. Kumar, M. Purohit, and E. Vee. Learning-augmented weighted
paging. In SODA, 2022.

[11] Y. Bartal, B. Bollobás, and M. Mendel. Ramsey-type theorems for metric spaces with applica-
tions to online problems. J. Comput. Syst. Sci., 72(5):890–921, 2006.

[12] L. A. Belady. A study of replacement algorithms for virtual-storage com-
puter. IBM Syst. J., 5(2):78–101, 1966. doi: 10.1147/sj.52.0078. URL
https://doi.org/10.1147/sj.52.0078.

[13] G. Bernardini, A. Lindermayr, A. Marchetti-Spaccamela, N. Megow, L. Stougie, and
M. Sweering. A universal error measure for input predictions applied to online graph
problems. CoRR, abs/2205.12850, 2022. doi: 10.48550/arXiv.2205.12850. URL
https://doi.org/10.48550/arXiv.2205.12850.

[14] A. Blum and C. Burch. On-line learning and the metrical task system problem. Mach. Learn.,
39(1):35–58, 2000. doi: 10.1023/A:1007621832648.

[15] H. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. Online algorithms with
advice: The tape model. Inf. Comput., 254:59–83, 2017.

[16] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge Uni-
versity Press, 1998. ISBN 978-0-521-56392-5.

[17] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task system.
J. ACM, 39(4):745–763, 1992. doi: 10.1145/146585.146588.

[18] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen. Online Algorithms
with Advice: A Survey. ACM Computing Surveys, 50(2):1–34, 2017. Article No. 19.

[19] J. Boyar, L. M. Favrholdt, and K. S. Larsen. Online unit profit knapsack with untrusted predic-
tions. In SWAT, volume 227 of LIPIcs, pages 20:1–20:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[20] S. Bubeck, M. B. Cohen, J. R. Lee, and Y. T. Lee. Metrical task systems on trees via mirror
descent and unfair gluing. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, pages 89–97, 2019. doi: 10.1137/1.9781611975482.6. URL
https://doi.org/10.1137/1.9781611975482.6.

[21] J. Chen, S. Silwal, A. Vakilian, and F. Zhang. Faster fundamental graph algorithms via learned
predictions. In Proceedings of the 39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research, pages 3583–3602. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/chen22v.html.

[22] J. Chledowski, A. Polak, B. Szabucki, and K. T. Zolna. Robust learning-augmented caching:
An experimental study. In M. Meila and T. Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 1920–1930. PMLR, 2021. URL
http://proceedings.mlr.press/v139/chledowski21a.html.

[23] E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility:
user movement in location-based social networks. In Proceedings of
SIGKDD’11, pages 1082–1090, 2011. doi: 10.1145/2020408.2020579. URL
https://snap.stanford.edu/data/loc-brightkite.html.

[24] CitiBike. Citi bike trip histories. https://www.citibikenyc.com/system-data.

[25] M. Dinitz, S. Im, T. Lavastida, B. Moseley, and S. Vassilvitskii. Faster matchings via learned
duals. In NeurIPS, pages 10393–10406, 2021.

[26] S. Dobrev, R. Královič, and D. Pardubská. Measuring the problem-relevant information in
input. RAIRO - Theor. Inf. Appl., 43(3):585–613, 2009.

26

https://doi.org/10.1147/sj.52.0078
https://doi.org/10.48550/arXiv.2205.12850
https://doi.org/10.1137/1.9781611975482.6
https://proceedings.mlr.press/v162/chen22v.html
http://proceedings.mlr.press/v139/chledowski21a.html
https://snap.stanford.edu/data/loc-brightkite.html
https://www.citibikenyc.com/system-data

Published as a conference paper at ICLR 2024

[27] M. Drygala, S. G. Nagarajan, and O. Svensson. Online algorithms with costly predic-
tions. In F. Ruiz, J. Dy, and J.-W. van de Meent, editors, Proceedings of The 26th In-
ternational Conference on Artificial Intelligence and Statistics, volume 206 of Proceed-
ings of Machine Learning Research, pages 8078–8101. PMLR, 25–27 Apr 2023. URL
https://proceedings.mlr.press/v206/drygala23a.html.

[28] P. Dütting, S. Lattanzi, R. P. Leme, and S. Vassilvitskii. Secretaries with advice. In EC, pages
409–429. ACM, 2021.

[29] F. Eberle, A. Lindermayr, N. Megow, L. Nölke, and J. Schlöter. Robustification of online graph
exploration methods. In AAAI, pages 9732–9740. AAAI Press, 2022.

[30] Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with advice. In Au-
tomata, Languages and Programming, 36th International Colloquium, ICALP 2009, Proceed-
ings, Part I, volume 5555 of Lecture Notes in Computer Science, pages 427–438. Springer,
2009. URL https://doi.org/10.1007/978-3-642-02927-1_36.

[31] J. C. Ergun, Z. Feng, S. Silwal, D. P. Woodruff, and S. Zhou. Learning-
augmented k-means clustering. In The Tenth International Conference
on Learning Representations, ICLR 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=X8cLTHexYyY.

[32] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young.
Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.
ISSN 0196-6774. doi: https://doi.org/10.1016/0196-6774(91)90041-V. URL
https://www.sciencedirect.com/science/article/pii/019667749190041V.

[33] A. Gupta, D. Panigrahi, B. Subercaseaux, and K. Sun. Augmenting online algo-
rithms with \varepsilon-accurate predictions. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Pro-
cessing Systems, volume 35, pages 2115–2127. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ea048312aa812b2711fe765

[34] J. Hromkovič, R. Královič, and R. Královič. Information complexity of online problems. In
MFCS, volume 6281 of LNCS, pages 24–36. Springer, 2010.

[35] S. Im, R. Kumar, M. M. Qaem, and M. Purohit. Online knapsack with frequency predictions.
In NeurIPS, pages 2733–2743, 2021.

[36] S. Im, R. Kumar, A. Petety, and M. Purohit. Parsimonious learning-augmented caching. In
ICML, 2022.

[37] P. Indyk, F. Mallmann-Trenn, S. Mitrovic, and R. Rubinfeld. Online page migration with
ml advice. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of The
25th International Conference on Artificial Intelligence and Statistics, volume 151 of Pro-
ceedings of Machine Learning Research, pages 1655–1670. PMLR, 28–30 Mar 2022. URL
https://proceedings.mlr.press/v151/indyk22a.html.

[38] A. Jain and C. Lin. Back to the future: Leveraging belady’s algorithm for improved cache
replacement. SIGARCH Comput. Archit. News, 44(3):78–89, June 2016. ISSN 0163-5964. doi:
10.1145/3007787.3001146. URL https://doi.org/10.1145/3007787.3001146.

[39] Z. Jiang, D. Panigrahi, and K. Sun. Online algorithms for weighted paging with predic-
tions. ACM Trans. Algorithms, 18(4):39:1–39:27, 2022. doi: 10.1145/3548774. URL
https://doi.org/10.1145/3548774.

[40] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures.
In Proceedings of SIGMOD’18, pages 489–504, 2018. doi: 10.1145/3183713.3196909.

[41] S. Lattanzi, T. Lavastida, B. Moseley, and S. Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, pages 1859–1877. SIAM, 2020. URL
https://doi.org/10.1137/1.9781611975994.114.

27

https://proceedings.mlr.press/v206/drygala23a.html
https://doi.org/10.1007/978-3-642-02927-1_36
https://openreview.net/forum?id=X8cLTHexYyY
https://www.sciencedirect.com/science/article/pii/019667749190041V
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ea048312aa812b2711fe765a9e9ef05-Paper-Conference.pdf
https://proceedings.mlr.press/v151/indyk22a.html
https://doi.org/10.1145/3007787.3001146
https://doi.org/10.1145/3548774
https://doi.org/10.1137/1.9781611975994.114

Published as a conference paper at ICLR 2024

[42] A. Lindermayr and N. Megow. Permutation predictions for non-clairvoyant scheduling. In
SPAA, pages 357–368. ACM, 2022.

[43] A. Lindermayr and N. Megow. Algorithms with predictions.
https://algorithms-with-predictions.github.io, 2022. URL
https://algorithms-with-predictions.github.io. [Online; accessed
8-September-2022].

[44] A. Lindermayr, N. Megow, and B. Simon. Double coverage with machine-learned advice. In
M. Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS
2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 99:1–
99:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.ITCS.
2022.99. URL https://doi.org/10.4230/LIPIcs.ITCS.2022.99.

[45] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn. An imitation learning approach
for cache replacement. In Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pages 6237–6247. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/liu20f.html.

[46] T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned advice. J. ACM,
68(4):24:1–24:25, 2021.

[47] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Beyond the Worst-Case
Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.

[48] A. Polak and M. Zub. Learning-augmented maximum flow. CoRR, abs/2207.12911, 2022.

[49] M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ML predictions. In
NeurIPS, 2018.

[50] D. Rohatgi. Near-optimal bounds for online caching with machine learned advice. In SODA,
2020.

[51] S. Sakaue and T. Oki. Discrete-convex-analysis-based framework for warm-starting algorithms
with predictions. CoRR, abs/2205.09961, 2022. doi: 10.48550/arXiv.2205.09961.

[52] Z. Shi, X. Huang, A. Jain, and C. Lin. Applying deep learning to the cache replacement
problem. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’52, page 413–425, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450369381. doi: 10.1145/3352460.3358319. URL
https://doi.org/10.1145/3352460.3358319.

[53] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun.
ACM, 28(2):202–208, 1985. doi: 10.1145/2786.2793.

[54] A. Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM, 2020.

[55] A. Zeynali, B. Sun, M. H. Hajiesmaili, and A. Wierman. Data-driven competitive algorithms
for online knapsack and set cover. In AAAI, pages 10833–10841. AAAI Press, 2021.

28

https://algorithms-with-predictions.github.io
https://algorithms-with-predictions.github.io
https://doi.org/10.4230/LIPIcs.ITCS.2022.99
https://proceedings.mlr.press/v119/liu20f.html
https://doi.org/10.1145/3352460.3358319

Published as a conference paper at ICLR 2024

A COMPUTATIONS FOR TABLE 1

In this section, we present the computations for the numbers of predictions we obtained in Table 1.

For f(i) = i and f(i) = i2, we have f(log k) equal to log k and log2 k respectively.

For f(i) = 2i − 1, we identify the first window i longer than f(i)− f(i − 1). Note that the length
of window i is k/2i = 2log k−i and this is equal to the sum of lengths of the windows j > i. The
total number of predictions used will be therefore f(i) + 2log k−i. For i = log

√
k + 1, we have

f(i)−f(i−1) = 2i = 2
1

2
log k+1 > 2log k−i. Therefore, we use 2i−1+2logk−i ≥ 3

√
k predictions

in each robust phase. Since offline optimum has to pay at least 1 per robust phase, we use at most
O(

√
k)OPT predictions in total.

For f(i) = 0, we ask for a prediction at each arrival of a clean page. The number of queries used
will therefore be at most the number of clean arrivals, which is at most 2OPT.

29

	Introduction
	Our results
	Related work

	Preliminaries
	Action predictions for MTS
	Caching: Belady's algorithm, Marking, and Lazy algorithms
	MTS and advice complexity

	Bounded number of predictions
	Analysis of Follower
	Analysis of `3́9`42`"̇613A``45`47`"603ARobustf

	Well-separated queries to the predictor
	MTS
	Algorithm FtSP
	Caching

	Experiments
	Conclusions
	Lower bounds
	Caching
	MTS

	FitF oracle
	Computations for Table 1

